ANTIBIOTICS II. Protein synthesis inhibitors Inhibitors of nucleic acid synthesis

Initiation Aminoglycosides

Elongation Aminoglycosides Chloramphenicol Tetracyclines Macrolides Clindamycin

Protein synthesis (50S inhibitors)

Erythromycin (Macrolides) Chloramphenicol Clindamycin

Protein synthesis (30S Inhibitors)

Tetracycline Spectinomycin

Streptomycin Gentamicin, Tobramycin (aminoglycosides) Amikacin

Natural

Tetracycline Oxytetracycline Chlortetracycline Demeclocycline

SUMYCIN TERRAMYCIN

DECLOMYCIN

- Semi-synthesized
 - Doxycycline
 - Minocycline
 - Methacycline
 - Tigecycline

DEOXYMYKOIN MINOCIN RONDOMYCIN

- TYGACIL
- (Rolitetracycline)

Short-acting (Half-life is 6-8 hrs) Tetracycline Chlortetracycline Oxytetracycline Intermediate-acting (Half-life is ~12 hrs) Demeclocycline Methacycline Long-acting (Half-life is 16 hrs or more) Doxycycline Minocycline Tigecycline

Mechanism of Action

Mechanism of Action

- bacteriostatic
- broad spectrum ATB
- bind reversibly to 30S ribosomal subunits
- block the binding of aminoacyl-tRNA to the acceptor site of mRNAribosome complex
- prevent the addition of AA to the growing peptide chain

Pharmacokinetics

- Absorption
 - 30% 100% (doxy-, mino-)
 - is affected by food, divalent cations
 (Ca²⁺, Mg²⁺, Fe²⁺, Bi²⁺ chelates),
 dairy products, antacids
 (except doxy-, minocyclin)

Pharmacokinetics

Distribution

- distribute widely to tissues, body fluids bile (except cerebrospinal fluid)
- bind and damage growing **bone** and **teeth**
 - cross plancental barrier
 - excreted in milk

Elimination

- occurs mainly via liver and kidney
- some of TTC have enterohepatic circulation

Clinical Uses

- many G+, G-, anaerobes, rickettsiae, chlamydiae, mycoplasma, some protozoa – amebias
- drug of choice in Mycoplasma pneumoniae,
 Spirochetes
- respiratory, urinary tract, billiary infection, tularemia, brucellosis, shigelosis, acne vulgaris....
- in combination ulcer disease caused by Helicobacter pylori

TTC - Adverse Effects

- Gastrointestinal irritation
 - nausea, vomiting and diarrhea
 - intestinal flora superinfection
- Bony structures and teeth
 - teeth discoloration
 - bone growth inhibition
 - contraindication in young children to
 - 12 years and during pregnancy teratogen

TTC - Adverse Effects

- toxicity to liver and kidney
- skin photosensitivity (!! sun, intense light)
- Fanconi syndrom expired TTC !!!! time of expiration
 - urinary excretion of large amounts of amino acids, glucose, phosphates, uric acid bicarbonate
 - symptoms osteomalacia, rickets, muscle weakness, cystinosis

Tetracycline teeth

Mechanisms of Resistance

- altered expression of proteins in drug resistant organisms
 - modification of target sites
 - decreased accumulation
 - efflux pump tetracycline resistance is a marker for resistance to multiple drugs
 - enzymatic inactivation

Efflux pump

Cytoplasm

Doxycycline

- Capsules
- Injection
- Tablet
- (Suspension)
- Dosing:

- Adults: 100-200 mg/day in 1-2 divided doses

p.o. or i.v.

- Give with meals to decrease GIT upset
- Take with water to avoid esophageal irritation, ulceration

Tigecyclin

- glycylcycline antibiotic
- very broad spectrum
- not affected by specific efflux pump
- by slow i.v. infusion
- G+, G- bacteria, anaerobes, MRSA
- it has no activity against Pseudomonas, Proteus
- for the treatment of skin, soft tissue, intra-abdominal infections

Tigecycline

• Distribution:

- gall bladder, colon, lung > serum
- bone, synovial fluid < serum
- Elimination:
 - Mostly feces/biliary excretion (59%)
 - Some excretion in urine (33%)
- Adverse Effects
 - Nausea
 - Vomiting
 - Diarrhea
 - Local reaction

Chloramphenicol

CHLORAMPHENICOL inj.

CHLORAMPHENICOL cps.

BETABIOPTAL gtt. opht.

BETABIOPTAL ung. opht.

OPHTALMO-CHLORAMPHENICOL ung. opht.

SPERSADEX gtt. opht.

Mechanism of Action

- broad-spectrum bacteriostatic ATB
- inhibitor of microbial protein synthesis
- bind reversibly to 50S ribosomal subunits
- inhibits the peptidyl transferase step of protein synthesis

Mechanism of action

Pharmacokinetics

- absorbed rapidly, completely from GIT
 parenteral IV
- weak protein bound (less than 30%)
- well distributed into body fluids including CNS cerebrospinal fluids, bile
- metabolized in the liver conjugation with glucuronic acid - <u>!!!</u> newborn
- excreted in the urine

Antimicrobial activity

• G+G-aerobic and... anaerobic organisms

Rickettsiae, spirochetes, mycoplasma
 H. influenzae, S. typhi, E. coli, N. meningitidis, S. Pneumoniae V. cholerae, Clostridium, *B. fragilis...* 50-100 mg/kg/d p.o. or i.v. divided into 4 doses

Clinical uses

- toxicity and resistance limits the use of chloramphenicol
- typhoid and paratyphoid fever, serious Salmonella infections, serious rickettsial infections
- topical use for treatment of eye infections
- bacterial menigitis in penicillin-resistant bacteria or penicillin-allergic patients
- anaerobic infections *B. fragilis*

Adverse reactions

- GIT disturbances nausea, vomiting, diarrhea
- superinfections oral, vaginal candidosis
- Bone marrow disturbances two types
 - reversible dose-related suppression of RBC production - interference with Fe metabolism
 - aplastic anemia rare reaction unrelated to dose - irreversible, can be fatal

- Irreversible idiosyncratic aplastic anemia
 - onset may be delayed until after therapy has been discontinued
- The reversible form is likely to occur with:
 - High doses (> 50 mg/kg/d)
 - A prolonged course of treatment (1-2 weeks)
 - In patients with liver disease
- Signs of the reversible form
 - Serum iron and saturation of serum iron-binding capacity increase
 - Reticulocytes decrease
 - Vacuolization of RBC precursors
 - Anemia
 - Leukopenia
 - Thrombocytopenia

Adverse reactions

- toxicity for newborn infants
 - dose > 25 mg/kg/d
 - Gray baby syndrom vomiting, shock, limp body tone, hypotension, hypothermia, gray coloration (skin, lips)
- interaction with other drugs
 - inhibits liver microsomal enzymes
- nausea, vomiting, and diarrhea
- hypersensitivity- uncommon, low incidence

Mechanisms of Resistance

- frequent (50%) connected to TTC resistance
- altered expression of proteins in drug resistant organisms
 - decreased accumulation
 - enzymatic inactivation

Aminoglycosides

Aminoglycosides - classification

- mycin (Streptomyces spp.)
- Streptomycin
- Neomycin (Framycetin, Paromomycin, Ribostamycin)
- Kanamycin (**Amikacin**, Arbekacin, Bekanamycin, Dibekacin, **Tehramycin**)

Dibekacin, **Tobramycin**)

- Hygromycin B · Spectinomycin
- Paromomycin
 - micin (Micromonospora actinomycetes)
- Gentamicin (Netilmicin, Sisomicin, Isepamicin)
- Verdamicin
- Astromicin
| Representative Sources
of Antibiotics | |
|--|---------------------------------------|
| Microorganism | Antibiotic |
| Gram-Positive Rods | |
| Bacillus subtilis | Bacitracin |
| Bacillus polymyxa | Polymyxin |
| Actinomycetes | |
| Streptomyces nodosus | Amphotericin B |
| Streptomyces venezuelae | Chloramphenicol |
| Streptomyces aureofaciens | Chlortetracycline and
tetracycline |
| Streptomyces erythraeus | Erythromycin |
| Streptomyces fradiae | Neomycin |
| Streptomyces griseus | Streptomycin |
| Micromonospora purpureae | Gentamicin |
| Fungi | |
| Cephalosporium spp. | Cephalothin |
| Penicillium griseofulvum | Griseofulvin |
| Penicillium notatum | Penicillin |

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Aminoglycosides

- Streptomycin STREPTOMYCIN inj.
- Gentamicin GARAMYCIN, GARASONE inj, loc
- Tobramycin NEBCIN, TOBREX inj, loc
- Amikacin AMIKIN, MIACIN inj
- Netilmicin NETROMYCIN inj, loc
- Kanamycin KANTREX inj, po, loc
- Neomycin MYCIFRADIN, PAMYCON po, loc

po

Paromomycin HUMATIN

Bacterial Targets for AG

AG - Mechanism of Action

- They interfere with the "initiation complex" of peptide formation
- They induce misreading of mRNA which causes an incorporation of incorrect amino acids into peptide resulting in a nonfunctional or toxic protein
- They cause a breakup of polysomes into non-functional monosomes

AG - Mechanism of Action

AG - Pharmacokinetics

- poor oral absorption
 - oral administration only for intestinal infection
 - GIT decontamination
 - parenteral administration i.m., i.v.
 - topical tobramycin in a nebulized form
- minimally protein bound (10%)
 - do not penetrate into the CNS, eye, milk
 - may cross the placenta

AG - Pharmacokinetics

- high concentrations kidney, cochlea, vestibul.app.
- strong tissue binding at the injection site
 - elimination T1/2 from tissues much longer

than from plasma

- postantibiotic effect (2 8 hrs)
- are not metabolized
- 90% eliminated by kidney
 - renal dysfunction \downarrow dose, \uparrow time interval,

AG - Antibacterial Spectrum

- most bacterial species are sensitive
- intracellular concentration dependent up on a oxygen transport system in the cell membrane - absent in anaerobes
- only clinically useful against organisms growing in aerobic conditions
- much stronger than the protein synthesis inhib.
- aerobic G-, Pseudomonas, Proteus, Klebsiella, Serratia, *E. coli*, mycobacteria

Therapeutic Uses of Aminoglycosides

Streptomycin

- Tularemia, brucellosis, plague
- G- bacillary infections of the urinary tract
- The use of streptomycin in the management of tuberculosis has declined

Gentamicin

- wide range of activity *Enterobacter, Serratia, Staphylococcus aureus*
- combination with penicillins bacterial endocarditis
- *Pseudomonas* effective with gentamicin, carbenicillin or ticarcillin
- initial treatment of bacteremia

Other Aminoglycosides

- amikacin, netilmicin, tobramycin
 used as gentamicin
- tobramycin more active against Pseudomonas aeruginosa
- tobramycin, netilmicin less ototoxic and nephrotoxic

AG - Adverse Effects

- dangerous factors:
 - using continuously more than 5 days
 - high dose
 - elderly and children
 - renal insufficiency

- concurrent use with loop diuretics or other nephrotoxic drugs

AG - Adverse Effects

- Dose related !!!!
- Concentration x Time dependence
 - proximal tubular cell damage
 - destruction of sensory cells in cochlea
 - destruction of sensory cells in vestibular apparatus
 - neuromuscular paralysis

AG - Adverse Effects

 Ototoxicity – irreversible damage – auditory - tinnitus, hearing loss – vestibular - vertigo, ataxia, loss of balance

– audiometric testing for early detection

- Nephrotoxicity retention of AG in kidney up to necrosis
- Suppression of neuromuscular transmission
- Allergic reaction after local administr.

Spectinomycin TROBICIN

- aminocyclitol similar to AG
- interaction with 30S inhibition of protein synthesis
- as one i.m. dose for gonorrhea treatment caused by penicillinase-producing Neisseria gonorrhea
- or in patients allergic to PNC

Adverse effects - hypersensitive reactions

Macrolides

Macrolides

Erythromycin

Clarithromycin

Azithromycin

History

- 1952 Erythromycin
- 1970s Acetylspiramycin
 Medecamycin, josamycin

 1980s Clarithromycin Roxithromycin Azithromycin

New macrolides antibiotics

Advantage

- broader spectrum, higher activity (G-)
- improved tolerability
- less toxicity
- improved PK properties
 - orally effective
 - better bioavailability
 - better tissue penetration
 - high blood concentration
 - prolonged half-lives

Macrolides

- Erythromycin
- Josamycin
- Spiramycin ROVAMYCINE
- Roxithromycin RULID, SURLID, ROXID
- Azithromycin SUMAMED, AZITROX, ZITHROMAX
- Clarithromycin FROMILID, KLACID, KLABAX, BIAXIN

WILPRAFEN

generic, ERYTHROCIN

• Dirithromycin DYNABAC

Mechanism of Action

- Bind reversibly to the **50S** subunit
- Inhibit elongation of the protein by the peptidyltransferas
- Suppression of RNA-dependent protein synthesis

Cross-resistance occurs among all macrolides

Macrolides

- **bacteriostatic** activity

<u>bactericidal</u> - at high concentrations against very susceptible organisms

- time-dependent activity
- extra-, intracellular activity
- postantibiotic effect (3 7 hrs)

Macrolide Spectrum

G-Aerobes

- *H. influenzae* (not erythro), *M. catarrhalis*, *Neisseria sp.*
- Do NOT have activity against any Enterobacteriaceae

Gram-Positive Aerobes

Methicillin-susceptible Staphylococcus aureus

- Streptococcus pneumoniae resistance
- Group and viridans streptococci
- Bacillus sp., Corynebacterium sp.

<u>Anaerobes</u> – activity against upper airway anaerobes

Atypical Bacteria –excellent activity:

- Legionella pneumophila
- Chlamydia sp.
- Mycoplasma sp.
- Ureaplasma urealyticum

<u>Other Bacteria</u> – Mycobacterium avium, Treponema pallidum Campylobacter,

Borrelia, Bordetella, Brucella. Pasteurella

absorption

- erythromycin base destroyed in stomach
 - is administered with enteric coating
 - esters and ester salts: more acid stable
- clarithromycin acid stable and well absorbed regardless of presence of food
- azithromycin acid stable food can decrease absorption of capsules
- i.v. risk of the trombophlebitis
- i.m. painful

distribution

- extensive tissue and cellular distribution
- clarithromycin and azithromycin

- extensive penetration

- into body fluids (except brain, CSF)
 - into prostatic fluids, also
- special ability to accumulate in the macrophages
- inflammation 1 penetration into tissue

metabolism

- metabolized, concentrated in the liver
- erythromycin and clarithromycin
 - inhibit cytochrom P-450
 - drug interactions !!!!!

(theophylline, anticoagulants, astemizol, terfenadine, carbamazepine, statines, antiarrhytmic drugs I. class)

excretion

- excreted in bile in the active form all
 - clarithromycin partially by the kidney
- partially reabsorbed

- enterohepatic circulation

Erythromycin

- a naturally- occurring macrolide Str. erythreus
- problems acid lability,
 - narrow spectrum,
 - poor GI intolerance,
 - short elimination half-life
- used as PNC substitute in PNC-allergic or resistant patients with infections caused by Staphyl., Strept., Pneumoc.
 - pertussis, diphtheriae
 - Legionella, Mycoplasma pneumonia
 - H. pylori infection

p.o. 0.25-0.5 g every 6 h, i.v. 0.5-1 g every 6 h Children – 40 mg/kg/d

Clarithromycin

- structural derivative
 - include broader spectrum of activity
- strongest activity on G+, *L. pneumophila, Ch. pneumoniae and H.pylori*
- good pharmacokinetic property
- low toxicity
- p.o. 0.25-0.5 g every 12 h or 1 g once daily

Azithromycin

- azalid
- the strongest activity against Hemophilus,
 M. pneumoniae, Neisseria, *H. pylori*,
 Campylobacter, atypical mycobacteria
- more effective on G-
- does not inhibit CYP 450
- well tolerated
- T1/2 35~48h once daily, 3 days only
- mainly in respiratory infection
- Daily dose 500 mg

Roxithromycin

- The highest blood concentration
- Bioavailability 72%~85%
- Respiratory infection soft tissue infection
- Low adverse effects
- interval 12 hrs

Spiramycine (ROVAMYCINE)

- produced by Streptomyces ambofaciens
- effective against G+ aerobic pathogens,
 N. gonorrhoeae, staphylococci
- used for infections caused by bacteria and *Toxoplasma gondii*

Macrolides - Adverse Effects

- Gastrointestinal up to 33 %
 - nausea, vomiting, diarrhea, dyspepsia
 - erythro, less with new agents
- Cholestatic hepatitis rare
 - > 1 to 2 weeks of erythromycin estolate

Macrolides - Adverse Effects

- Thrombophlebitis i.v. Erythro and Azithro
 - dilution of dose, slow administration
- Other ototoxicity (high dose erythro, RI)
 - QTc prolongation
 - allergy
 - drug interactions
ATB RELATED TO MACROLIDES

STREPTOGRAMINS

- Quinupristin/Dalfopristin

(SYNERCID)

- <u>KETOLIDES</u>
 - Telithromycin

(KETECK)

OXAZOLIDINONES

- Linezolid (LIZOLID, ZYVOX)

Quinupristin/dalfopristin

- Quinupristin streptogramin A
- Dalfopristin streptogramin B
- Binds 50S ribosome each agents at different place - synergic inhibition of the protein synthesis
- Bactericidal, long postantibiotic effect
- High activity against MRSA and VISA
- Synergy with β-lactams,
 Additive with vancomycin

Quinupristin/dalfopristin

- Interavenously; 7.5 mg/kg every 8-12 h
- Penetration into macrophages and PMNL
 - important (VRE are intracellulary)
- Low level in the CSF
- Both metabolized

(less active metabolit - quinuprostin

similar active – dalfopristin)

• Eliminated by bile, feaces

Adverse effects:

- Arthralgias, myalgias
- Hyperbilirubinemia

Telithromycin (KETEK)

Mechanism of action

- binds to the subunit 50S of ribosome, blocks growing polypeptide chain
- 10 x higher affinity to 50S than Eryth
- strongly binds to two domains 50S older agents bind strongly only to one domain
- can also inhibit the formation of ribosomal subunits 50S and 30S

Telithromycin

- acid-stable orally tbl. with or without food rapidly absorbed (800 mg/d)
- diffused into most tissues and phagocytes
 - transported to the site of infection
- during phagocytosis large concentrations of telithromycin is released
 - concentration in the tissues is much higher than in plasma
- Metabolism
- metabolized mainly in the liver
- elimination the bile
- half-life is approximately 10 hours

Telithromycin

Adverse effects

- GIT diarrhea, nausea, abdominal pain vomitus
- headache, disturbances in taste
- blurred vision, rashes
- rare but severe side effects liver damage
- palpitations, prolongation QT interval
- can cause myasthenia gravis
- safety controversies
- used treatment of community acquir. pneumonia (mild to moderate severity)

Linezolid

- oxazolidinone i.v., p.o.
- high bioavailability
- inhibits the protein synthesis by preventing formation of 70S
- spectrum G+
- lack cross-resistance other mode of action
- P.o. or i.v. administration 600 mg every 12 h
- Adverse effects
 - myelosuppresion
 - thrombocytopenia

Macrolides, Azalides and Ketolides

Inhibitors of Nucleic Acid Synthesis Quinolones

Classification

Quinolones – non-fluorated (1st generation)

Fluoroquinolones

(2nd, 3rd, 4th generation)

Quinolones

parent drug: nalidixic acid

Quinolones (1st generation)

- Non-fluorated
- -Narrow spectrum
- Low antimicrobial activity
- Low bioavailability
- High metabolism
- Adverse effect and resistance
- -Low concentration serum, tissue
- Mostly used in UTIs

Fluoroquinolones (2nd, 3rd, 4th generation)

- Modified 1st generation quinolones
- Fluorine atom C-6 or C-7 position
- Better pharmacokinetics
- Bactericidal
- Broad spectrum
- High antimicrobial activity
- Intracellullar patogens, too
- Post-antibiotic effect
- Wide distribution to urine and other tissues limited CSF penetration

Quinolones

- bactericidal agents broad spectrum
- both concentration dependent effect
- act intracellullary

(Legionella pneumophila,

Mycoplasma pneumoniae)

- Post-antibiotic effect 1 to 2 hours
 - 1 with increasing concentration

Generation	Drug Names	Spectrum		
1st	nalidixic acid (NEGRAM) cinoxacin	G- but not Pseudomonas sp		
2nd	norfloxacin (NOROXIN) ciprofloxacin* (CIPRO) enoxacin (PENETREX) ofloxacin (FLOXIN,TARIVID) lomefloxacin (MAXAQUIN)	G- (Pseudomonas species), some G+ (S. aureus) and some atypicals * intracellullary		
3rd	levofloxacin * (LEVAQUIN) sparfloxacin (ZAGAM) moxifloxacin (AVELOX) gatifloxacin (TEQUIN) pefloxacin (ABACTAL)	Same as 2 nd generation with extended G+ and atypical * intracellullary		
4th	trovafloxacin (TROVAN) (hepatotoxicity) gemifloxacin (FACTIVE)	Same as 3 rd generation with broad anaerobic		

Mechanism of action

REPLICATION

Mechanism of Action

- 1. Inhibition of bacterial DNA Gyrase (Topoisomerase II)
- 2. Inhibition of bacterial Topoisomerase IV
- they prevent bacterial DNA from unwinding and duplicating
- inhibiting DNA synthesis, replication and transcription

– rapid cell death

Mechanism of Action

Drug by brand name	Orally absorbe	Cmax (Mg/dl)	T ½ (hrs)	Regards to food	Protien bound	Elimination path	Dosage forms
Norfloxacin	30-40%	1.5	3.5	Empty stomach	10- 15%	Billiary and renal	Oral
Ciprofloxacin	70%	2.4	4.0	Empty stomach	20- 40%	Renal 66% Hepatic 33%	Oral, IV
Ofloxacin	98%	2.9	4.5	Not studied	32%	Renal	Oral, IV, Opthalmic
Lomefloxacin	>95%	8	8.0	Empty stomach	10%	Renal, 65% unchanged in urine	Oral
Levofloxacin	99%	5.7	6-5	No effect	24- 38%	Renal, 87% unchanged in urine	Oral, IV
Sparfloxacin	•		16-30	No effect	45%	Hepatic glucuronidation	Oral
Moxifloxacin	90%	4.5	12	No effect	50%	Renal, 45% unchanged in urine, Hepatic conjugation	Oral
Gatifloxacin	96%	3.8	7.8	No effect	20%	Renal, 70% unchanged in urine	Oral, IV
Trovafloxacin	88%	2.1	9.6	No effect	76%	Conjugation, 43% unchanged in faeces	Oral, IV

Pharmacokinetics

- absorption
 - significantly \downarrow with Al+, Mg+, Ca+, Fe+,Zn+
 - chelation complex
 - administer 4 h before or 2 h after agent
- longer half life in newer agent 1 x or 2 x daily
- eliminated by kidneys !! renal function
- urine concentration of Cipro and Floxin are 25 x higher than serum
- Moxifloxacin excreted by liver, low urinary conc.
 do not use in UTIs

Quinolones

- Conc > serum
 - Prostate tissue
 - Stool
 - Bile
 - Lung
 - Neutrophils
 - Macrophages
 - Kidneys

- Conc < serum
 - Prostatic tissue fluid
 - -Bone
 - -CSF

Quinolones - adverse effects

- GIT nausea, vomiting
- CNS headache, dizziness, confusion, insomnia, seizure (rare)
- Cardiovascular torsades de pointes (rare)

- arrhythmias

 Musculoskeletal - rupture of tendon (rare) arthropatogenic effect (!! contraindicated to 18 years)

Quinolones - adverse effects

- Neurologic polyneuropathy (rare)
- Photosensitivity
- Blood picture
- Liver function
- Blood glucose disturbances in DM patients
- Dysmicrobia enterocolitis
- Resistance
- !!! pregnancy, lactation

Resistance to fluoroquinolones

Quinolones - adverse effects

- Drug interactions
 - $-\downarrow$ absorption Al³⁺, Mg²⁺, Ca²⁺, Bi²⁺
 - antacids
 - H₂ antihistaminics

 \downarrow of Fch bioavailability

Quinolones - adverse effects

Drug interactions

CYP 450 inhibition – ciprofloxacin warfarin, coumarin, ranitidine, theophyline, cyclosporine, caffeine, opioids, rifampicin, glibenclamide

Therapeutic Use

- Urinary tract infection (complicated also)
- Skin, Soft Tissue Infections
- Urethral, Cervical gonococcal infections
- Prostatitis
- Sexual, Chlamydia, gonococcal infections
- Bone, joint Infections (G-)
- Infectious diarrhea
- Thyphoid fever, salmonelosis, shigelosis
- Nosocomial pneumonia, CF
- Acute sinusitis, otitis