
Factors influencing drug effects

Basic factors influencing the action of agent

dose

• way (route) of administration

Dose

• Measured amount of an agent given in international weight or volume units.

Types of doses

- subliminal dose- no effect
- "liminal" (threshold) dose– evaluable effect
- therapeutic dose supraliminal dose suitable for therapy
- maximal dose highest therapeutic dose without toxic effects
- Single or daily therapeutic and maximal dose

Types of doses

- One bout dose in bolus, aggressive dose enables quick reaching of desired concentration
- Saturant dose saturates binding sites and enables reaching of desired plasmatic concentration of free agent
- Maintaining dose maintains desired plasmatic levels after saturation

Types of doses

- Effective dose (ED) is equal to therapeutic dose
- Lethal dose (LD) dose leading to death of experimental animals
- **Toxic** dose (TD) dose evoking toxic effects

Other characteristics

- Threapeutic range difference between LD_{50} and ED_{50} (in animals) or TD_{50} and ED_{50} in humans
- Therapeutic index ratio between LD_{50} and ED_{50} (or TD_{50} and LD_{50}) – expresses ratio between effectivness and risk of drug administration – higher ration, better safety

Way (route) of administration

- Peroral
- Rectal
- Intravesical
- Intranasal
- Into eye
- Into ear
- Superficially (transdermal)

- Intravenous
- Intramuscular
- Subcutaneous
- Intracutaneous
- Intraosseal
- Intracardial

Classification of factors

- External factors
- Internal factors

External (exogenous) factors

- Food
- Medicinal form
- Alcohol
- Smoking
- Environmental factors
- Ionizing radiation

Internal (endogenous) factors

- Age
- Sex
- Pathological state of patient
- Genetic factors
- Types of neural function
- Others

Food

- Volume, quality
- Drug absorption
- This bile secretion The absorption of lipophilic agents (waxed)
 - \downarrow absorption of kanamycin
- ↑ enzyme secretion proteolytic enzymes – peptide degradation

Food

- The drug effect depends on duration of stay in GIT
- \downarrow stomach emptying:
 - anticholinergics (NACTON)
 - antihistamines $(H_1, H_2, H_3$ blokátory)
 - antidepresssants (MELIPRAMIN)
 - neurolpetics (PLEGOMAZIN)
 - analgesics (MORFIN)
 - antacids (ANACID)
- All of them ↑ absorption from stomach (but not intestine), prolong the stay and ↑ drug effects

Food

 ↑ emptying of stomach: metoclopramid, syntostigmin, prostigmin - ↓ effect of drug absorbed from stomach

Expressions:

- With meal
- During eating
- On an empty stomach (not before meal)

Food and drugs

Fasting

- barbiturates
- celafolosporines
- penicillin 1 h. before meal
- Not on an empty stomach
 - acetylsalicylic acid
 - antihelmintics
 - doxycyclin

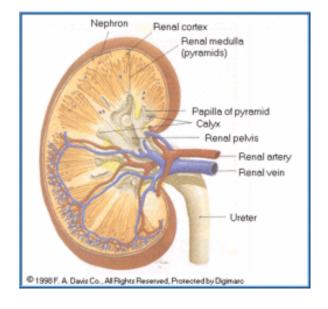
- With meal
 - cimetidin
 - diazepam
 - digoxin
 - ketason
 - hydrochlorotiazid
 - carbamazepine
 - furantoin
 - tetracyclin 2 h. after meal

Food and drugs

- Acids (ACIPEPSOL) before meal for ameliorating the taste
- Antacids (ANACID) between two meals
- Antiulcer drugs (pirenzepin) with meal
- Digestives 20-30 min before meal
- Enzymes (PANKREOLAN) with or after meal
- Laxatives
 - salinic on an empty stomach dissolved in water
 - chemical after meal
- Choleretics with or after meal

Food and drug biotransformation

- first-pass-effect liver
- insufficient protein or lipid supply
- lack of vitamins B1, C, E
- smoking


Food and drug distribution

 Differences in serum levels – in higher content of saccharides, proteins and lipids

Food and drug excretion

- Urine pH changes
 - Acidifying meals: meat, bacon, fish, cakes, eggs, cheese
 - Base-forming meals: butter, vegetables, fruits (except of plums and cranberries)

Food and adverse effects

- Thyrozin bananas, pine-apple, lemons, tomatoes, figs, venison (wild animals meat), liver, cheese, caviar, chocolate – if combined with MAO inhibitors (antidepressants) – risk of hypertensive crisis leading to hemorrhagic stroke or death
- Isoniazid (antituberculotic) no Swiss cheese risk of histamine intoxication.

Food and adverse effects

- warfarin no foods with ↑ content of vitamin K spinach, cabbage, broccoli – decreasing its effects.
- diuretics, saluretics, corticosteroids, cardiotonics – decreasing K⁺ - necessary to eat cauliflower, lentil, bananas, apricots, potatoes, plums – natural K⁺ supplementation.

Food and adverse effects

- Barbiturates for sleep their effect is increased with simultaneous intake of sugar and decreased with food containing theophylline or caffeine
- Sweets from licorice not to be taken in patients with heart failure – risk of hypokaliemia

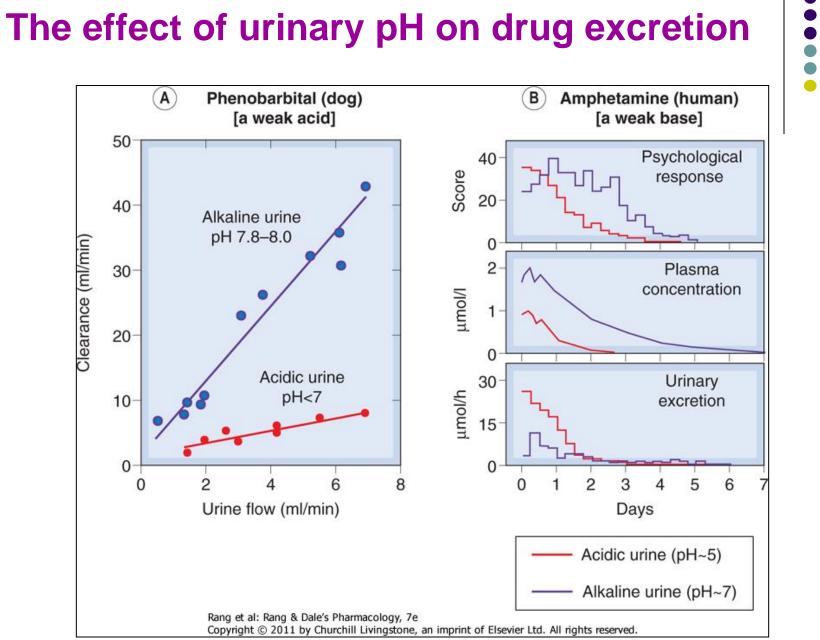
Medicinal form

- Liquid
- Solid
- Gaseous (aerosol)
- Liquid quick absorption, less AEs important to rinse down some drugs
- Analgesics (ASPIRIN) in form of effervescent tablets

Drugs and "rinsing down"

- Rinse down with water: anticholinergics (NACTON), cephalosporins, CURANTYL, doxycyclin – not with milk – to rinse down with water, sitting or standing, or to swallow solid food – tendency to adhere to esophageal mucous membrane – irritation and inflammation, erythromycin, sulphonamides (alkalic mineral waters – decreasing adverse effects on kidneys), penicillins, corticosteroids.
- KCI rince down with fruit juice
- TTC solution of citric acid

Drugs and "rinsing down"



- Drugs to be rinsed down with milk phenylbutazon (proptection of stomach), fenytoin, izoniazid, kebuzon, corticosteroids, nitrofurantoin, vitamin D, hormones, hydralazines
- TTC not with milk minimum 3 hours before and after meal (neither milk products), no mineral waters like Vincentka, Fatra, Korytnica
- Keflex, V-PNC, Natrium fluoratum, Ferronat, Digoxin no milk
- Acid-labile ATB ampicillin, erythromycin no acidic fruit juices, no lemon (tonic, Coca-Cola, fruit ciders)

Drug excretion

- Urine pH acidic drugs with acidic nature have decreased excretion
- Urine pH basic drugs with acidic nature have increased excretion
- Urine alkalinization (NaHCO₃): used in the therapy of barbiturate intoxication
 - ↑ excretion (barbiturates, Biseptol, Septrin, Sumetrolim, Supristol)
 - \downarrow excretion (nalidixin, fenylbutazon, sulphonamides)

Drug excretion

- Caffeine ↑ secretion of gastric acid, ↑ diuresis, ↑ production of N-nitrosamine – not to combine with neuroleptics (haloperidol, flufenazine) – precipitation
- ↑ content of Na⁺ and K⁺ in food edemas
- Na + Vincentka, K + tomatoes, orange, apple juice
- Beer PRAZDROJ 12° amount of K⁺ similar to 1 tablet of Kalium Chloratum SPOFA

Alcohol and drug absorption

- Low concentration of alcohol 1 drug absorption
- High concentration of alcohol \downarrow drug absorption due to pylorospasm
- Do not combine with Diazepam individual susceptibility misused by drug-addicts – tolerance in the same person may vary – inter- and intra-individual susceptibility.
- The worst effect on drugs (AEs) white wine, beer, whisky
- Red wine almost as non-alcoholic drinks (due to tannins)

Alcohol and drug biotransformation

- Acute intake prolongs and promotes the effect
- Chronic intake decreases effect of drugs
- Cimetidin and ketotifen both increase blood levels of alcohol

Smoking and drug effects

- ↑ metabolic clearance of amitryptilin, diazepam, phenacetin, phenobarbital, insulin, caffeine, paracetamol, pentazocine, theophylline, vitamin C – their effect is lower
- Nicotine increases serum levels of cholesterol, TAG and beta-LP

Elderly

- ↓ absorption, ↓ secretion, ↓ acidity, venostasis, ↓ motility, ↓ emptying, changes in bacterial flora
- \downarrow active transportation of Ca²⁺ and glucose

Elderly

Drug biotransformation

- Prolonged biological half-life fenazon, quinidin, diazepam, paracetamol, phenylbutazon, phenobarbital, lidokaine
- ↓ enzyme activity, ↓ liver blood flow, ↓ activity of kidneys - attention to smoking and alcohol

Children

- \downarrow amount of gastric and intestinal secretion
- \downarrow acidity
- \downarrow proteolytic activity
- \downarrow absorption surface
- \downarrow muscle mass

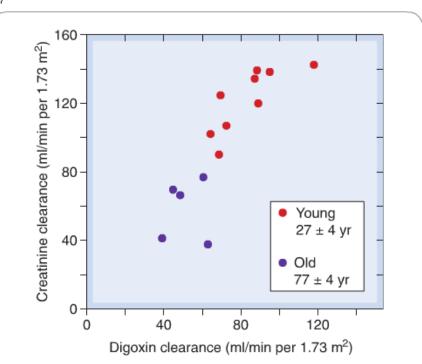
Children

Drug biotransformation

- Immature enzymatic systems glucuronizationtransforming system
- Chloramphenicol Grey syndrome
- Sulphonamides, vitamin K nuclear (cerebral) icterus (kernicterus), death
- \downarrow glomerular filtration

Children

- immature CNS and other organs ↑ susceptibility to morphine – depression of respiratory centre
- \downarrow threshold for cramps amidopyrin, antihistamines
- Children can better tolerate atropine and cardiotonics


Effect of age on elimination

Drug	Mean or range of half-life (h)		
	Term neonate ^a	Adult	Elderly person
Drugs that are mainly e in the urine	excreted unch	anged	
Gentamicin	10	2	4
Lithium	120	24	48
Digoxin	200	40	80
Drugs that are mainly n	netabolised		
Diazepam	25-100	15–25	50-150
Phenytoin	10–30	10–30	10–30
Sulfamethoxypyridazine	140	60	100

*Even greater differences from mean adult values occur in premature babies.

(Data from Reidenberg 1971 Renal function and drug action. Saunders, Philadelphia; and Dollery 1991 Therapeutic drugs. Churchill Livingstone, Edinburgh.)

Fig. 56.1 Relationship between renal function (measured as creatinine clearance) and digoxin clearance in young and old subjects. (From Ewy G A et al. 1969 Circulation 34: 452.)

Sex

- periods, gravidity, climacterium 1 susceptibility to CNS stimulants and to drugs influencing blood pressure
- Women have better toleration for barbiturates

Pathologic state

 Jabsorption – atrophy of intestine epithelia, quick motility (passage – diarrhea, vomiting), GIT tumors ulcerations, surgical interventions

• **†** absorption – GIT inflammation, **†** congestion

Pathologic state

Drug distribution

- Liver diseases
- Nephrotic syndrome associated with hypoalbuminemia)
- \downarrow heart capacity

Drug excretion

• \downarrow by kidneys insufficiency, accumulation – risk of AE

Pathologic state

 Drugs excreted with bile – attention in cholestatic liver diseases - ↑ effects and AEs (Agofolin, Biogastron, Agolutin, Agovirin, Vinkristin, Regalon)

- Pathological state:
 - is condition of drug effect antipyretics, cardiotonics,
 - is contraindication of drug administration glaucoma and prostate hypertrophy – not atropine

Genetic factors

- Resistance to coumarin anticoagulants (Pelentan)
- Different kinetics individuals, races (breeds)
- Depends on genetic changes in cytochrome P-450
- Slow and fast acetylators classification of individuals metaboilism of izoniazid
 - Slow acetylator ↑ plasmatic concentration, ↑ accumulation, ↑ AEs
 - Fast acetylator ↓ plasmatic concentration, ↓ accumulation, ↓ AEs

Genetic factors

- Differences in acetylation sulphonamides, chlorpromazin, prokainamid, izoniazid
- Polymorphism of hydroxylation not completely elucidated yet (captopril, Betaloc, fenacetin, fenytoin, propranolol
- Insufficient biotransformation of succinylcholiniodid atypical cholinesterase
- Deficiency of glucose-6-phosphatedehydrogenase acute hemolysis after administration of dapson, methylene blue, nitrofurantoine, pamaquin, primaquin, quinolones, sulphonamides

Changes in drug effects after repeated administration

- Long-term administration
- continual tachyphylaxis, tolerance, drug dependence (addiction), allergy
- intermittent allergy

They belong mostly to AEs

Tachyphylaxis

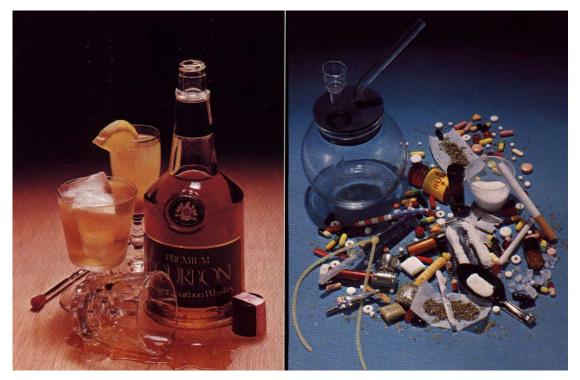
- occurs after repeated doses (especially with quick repeating) leading to fast and significant decrease in susceptibility of organism to the respective drug.
 - E.g. depletion of mediator norepinephrine after administration of ephedrine

Tolerance

- Occurs after slower decrease of drug effect (during several days or weeks) with necessity of continual increasing the doses to reach the same effect.
 - E.g. in drugs with addiction risk, during long-term administration of β_2 -mimetics, SH groups by administration of nitrates

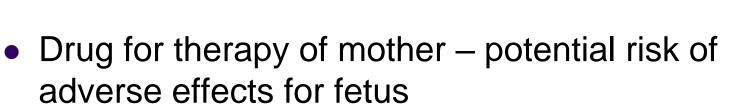
Allergy

• Unwanted reaction of the body to an agent occurring especially after its repeated administration.



C Mayo Foundation for Medical Education and Research. All rights reserved.

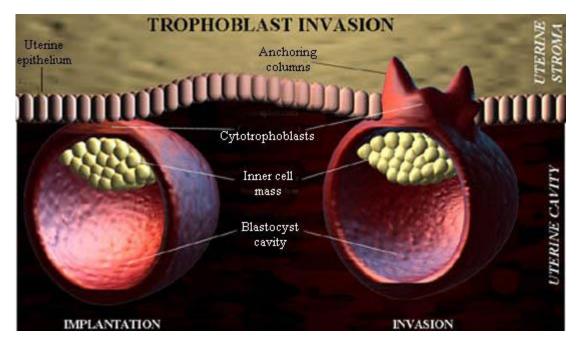
Drug dependence (addiction)



• Unwanted effect occurring especially after repeated administration of some drugs influencing CNS

http://www.councilonalcoholism.net/images/drgsal.jpg

Drugs and gravidity

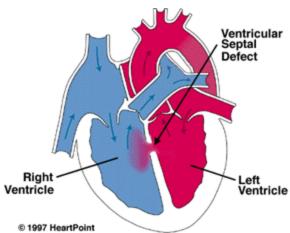


 Risk of drug adverse effect ↔ stage of fetal development

Period before nidation (implantation)

- Relatively safe against teratogenic influences
- "All or nothing"

http://www.sgul.ac.uk/depts/immunology/~dash/troph/trophoblast.jpg



Period of embryonic development

- Morphological development of organs 1 susceptibility to teratogens
- 1st trimester (15th 55th day)
- Specific malformations:
 - Anencephaly 26th day
 - Transposition of big vessels –34th day,
 - Cleft lip 36th day,
 - Defect of ventricular septum 42nd day

Period of fetal development

- Development of fine tissue ultra-structure, enzymatic and biochemical equipment, receptors, mediators, teeth, genitalia, CNS
- Functional changes immediately
 - postnatal (behavioral changes, metabolic diseases....)

Negative drug effects on fetus

- teratogenic
- carcinogenic
- Genetic factors
- Age
- Alimentation state
- Concomitant diseases
- Physical factors

Teratogenic effects

Drugs evoking fetal malformations

- Morphological, structural changes in growth phase
- Functional changes
- Independent on dose (thalidomid)
- Dose-dependent (teratogenic dose vitamin A)

http://www.fda.gov/cder/news/graphics/baby.gif

Carcinogenic effects

Drugs administered to mother evoke cancer in fetus

- Transplacentar carcinogenesis (occurs after birth, after latent period) diethylstilbestrol
- Mostly after administration in second half of pregnancy
- urethane pulmonary adenomas, liver cancer, ovarian cancer

Teratogenic and carcinogenic effects

In earlier stage of fetal development is teratogenic, in later phase carcinogenic

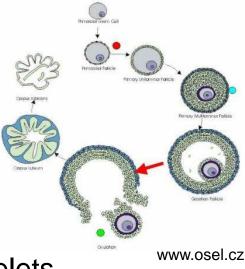
• Ionizing radiation, alcohol, hydantoins, androgens, diethylstilbestrol

Toxic effects on germ cells

Influence especially on spermiogenesis

- cytostatics
- hormonal agents antiandrogens
- antiepileptics
- colchicines
- immunotherapeutics corticosteroid

Ako by mohlo vajičko odolať


takejto spermii?

Effects on egg before fertilization

- Abstinence symptoms addictive agents opiate analgesics, psychopharmacons
- Metabolic changes
 - hypoglycemia alcohol, insulin, peroral antidiabetics, propranolol, trimepranol
 - hyperglycemia diazoxid
- **Disbalance in electrolytes** corticosteroids, diuretics
- Thyroidal dysfunction iodine, lithium, antithyroidal agents
- Hematologic changes bleeding, anemia, platelets disturbances, alcohol, barbiturates, dicoumarol anticoagulants, diuretics, quinine, local anesthetics, nitrofurantoin, salicylates, sulphonamids
- Icterus- sulphonamids

Fetal impairment

- abortus
- morphological
- functional
- reversible
- ireversible

Critical factors influencing drug transport through placental membrane

- Velocity of transportation through placental membrane
- Drug amount, reaching the fetus
- Drug distribution in fetal tissue
- Drug effects in combinations
- Autonomic drug use without noticing the physician
- Safe drug for mother ≠ safe drug for fetus
 - Acetylsalicylic acid impairment of fetal circulation

Velocity of drug transport through placenta

Drug solubility in lipids

- lipophilic drugs quick membrane transportation, entering fetal circulation
- hydrophilic limited placental crossing

Size of drug molecule

- Low molecular weight (Mr 250-500) easy transportation
- Mr 500-1000 limited
- Mr nad 1000 not crossing

Anticoagulants in pregnancy

- Heparin high-molecular, low solubility in lipids
- Warfarin teratogenic, crosses placental membrane

Drug metabolism in placenta

- Semi-permeable membrane
- Metabolic processes in placental tissue leading to degradation of e.g. ethanol, pentobarbital

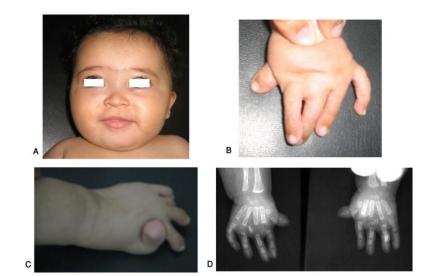
Drug metabolism in fetus

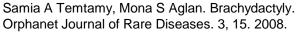
- placenta funicle fetus (60% blood liver)
- Agents influencing CNS functions
 - \downarrow function of fetal blood-brain barrier
 - Progressive maturation of transport mechanisms
- Psychopharmacons administered in the end of gravidity -CNS disturbances in later life of fetus
- Opiate analgesics breathing disorders influencing the respiratory centre of newborn
- Therapy of infectious meningitis in newborns cefuroxim easily penetrates through immature blood-brain barrier

Duration of exposure, distribution of drug in fetus

- Single exposure may influence structures in phase of quick development (thalidomide extremities)
- Long-term exposure cumulative effect, impairment of several organs
 - alcohol fetal alcoholic syndrome FAS, opiates opiate dependence, abstinence syndrome of newborn
- Influencing the transport of oxygen and nutriments through placenta
- Direct influence on fetus

Drug fetal syndromes




Morphological, functional malformations

- Delayed occurrence:
 - Alcohol fetal syndrome retarded development, skeletal anomalies, CVS defects (daily 100-150 g of alcohol)
 - Antiepileptics hydantoins fenytoin SODANTON, PHENYTOIN, EPANUTIN, EPILAN, SANEPIL – fetal impairment
 - Contraceptive pills diethylstilbestrol higher incidence of uterine adenocarcinoma in fetus reaching adulthood

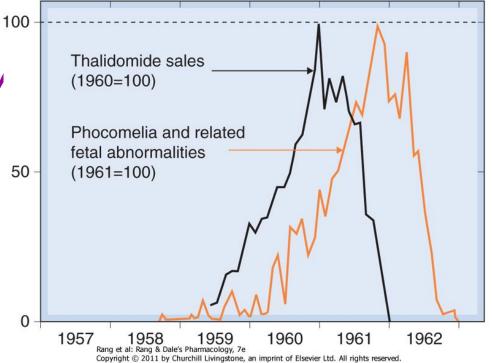
Drugs and skeletal development

- Long period of pregnancy
- 6th week to end of 3rd trimester
- Skeletal malformations, impairment of ossification centres disproportions in growth of extremities, detection of developmental skeletal manomalies – simple, easy to see
- thalidomide, TTC, cytostatics cyclophosphamid, chlorambucil, busulfan, methotrexate, 5-fluorouracil, acetazolamid, grizeofulvin

Drugs interaction

Reason of many unclear impairments of fetus

- drug + drug
- drug + additive agents (foods, exhalants, chemical agents of environment)
- Potentiation of effect on fetus
 - nicotine ↑ teratogenic effect of insulin
 - Benzooic acid 1 teratogenic effects of acetylsalicylic acid


Fetal (perinatal) pharmacotherapy

- Administration of drug to pregnant woman aiming to treat fetal disorder
 - corticosteroids stimulation of lungs maturation, in risk of preterm birth and RDS
 - Therapy of heart arrhythmias
 - fenobarbital 1 metabolism of bilirubine

- I. group evident teratogens:
- Thalidomid
- Estrogens
- Cytostatics inhibitors of folic acid methotrexate

II. group – agents suspicious for teratogenic effects:

- Antiepileptics phenytoin, phenobarbital
- Anticoagulants warfarin
- Alkylating cytostatics cyklophosphamid, busulphan, chlorambucil
- Thyreostatics propylthiouracyl, thiouracyl
- Peroral antidiabetics tolbutamid
- other streptomycin, TTC, alcohol

III. group – agents potentiated by external factors (without clear evidence):

- Peroral contraception pills
- Anxiolytics
- Antiemetics
- Acetylsalicylic acid
- Chemoterapeutics sulphonamides
- Antimycotics griseofulvin
- Antimalarial drugs quinine

- Influence of local and general anesthetics healthcare personnel – repeated exposure – last trimester – disturbed physiological function of fetus – respiratory disturbances, ↓ muscular tone in fetus
- Nicotine 10 cigarettes ↓ birth weight, retardation in further development
- Addictive agents

IV. group – other drugs

Drugs during lactation

- Recommendation drug administration immediately after breastfeeding and 3 hours before another breast feeding
- Most of the drugs occur in maternal milk in very low concentration – they do not reach therapeutic dose

Drugs during lactation

Dangerous

- Antimicrobial agents, sulphonamides compete with bilirubine in binding to plasmatic albumin - ↑ probability of nuclear icterus,
- TTC teeth, bones,
- Chloramphenicol "grey syndrome" of newborn
- Isoniazid deficit pyridoxine
- Psychopharmacons hypnotics numbness, ↓ sucking reflex,
 - **Diazepam** accumulation in the body

Drugs during lactation

- Analgesics morphine, pentazocin, tilidin addiction – abstinence syndrome – do not stop their administration suddenly! Continual decreasing doses.
- Alcohol low doses, nicotine, caffeine minimal concentration in milk
- Drugs modifying endocrine functions contraindicated